Probabilistic Analysis of Singularities for the 3d Navier-stokes Equations

نویسنده

  • Franco Flandoli
چکیده

The classical result on singularities for the 3D Navier-Stokes equations says that the 1-dimensional Hausdorff measure of the set of singular points is zero. For a stochastic version of the equation, new results are proved. For statistically stationary solutions, at any given time t, with probability one the set of singular points is empty. The same result is true for a.e. initial condition with respect to a measure related to the stationary solution, and if the noise is sufficiently non degenerate the support of such measure is the full energy space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Partial Regularity of a 3D Model of the Navier-Stokes Equations

We study the partial regularity of a 3D model of the incompressible Navier-Stokes equations which was recently introduced by the authors in [11]. This model is derived for axisymmetric flows with swirl using a set of new variables. It preserves almost all the properties of the full 3D Euler or Navier-Stokes equations except for the convection term which is neglected in the model. If we add the ...

متن کامل

Point singularities of 3 D stationary Navier - Stokes flows

This article characterizes the singularities of very weak solutions of 3D stationary Navier-Stokes equations in a punctured ball which are sufficiently small in weak L3.

متن کامل

9 Point singularities of 3 D stationary Navier - Stokes flows

This article characterizes the singularities of very weak solutions of 3D stationary Navier-Stokes equations in a punctured ball which are sufficiently small in weak L3.

متن کامل

On the blow-up problem and new a priori estimates for the 3D Euler and the Navier-Stokes equations

We study blow-up rates and the blow-up profiles of possible asymptotically self-similar singularities of the 3D Euler equations, where the sense of convergence and self-similarity are considered in various sense. We extend much further, in particular, the previous nonexistence results of self-similar/asymptotically self-similar singularities obtained in [2, 3]. Some implications the notions for...

متن کامل

On the Stabilizing Effect of Convection in 3D Incompressible Flows

We investigate the stabilizing effect of convection in 3D incompressible Euler and NavierStokes equations. The convection term is the main source of nonlinearity for these equations. It is often considered destabilizing although it conserves energy due to the incompressibility condition. In this paper, we show that the convection term together with the incompressibility condition actually has a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002